
IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 11, November 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41113 71

Open Source Middleware for Internet of Things

Jyothi T

Assistant Professor, Department of ISE, GSSSIETW, Mysuru, India

Abstract: Internet of Things (IoT) has been recognized as a part of future internet and ubiquitous computing. It creates

a true ubiquitous or smart environment. It demands a complex distributed architecture with numerous diverse

components, including the end devices and application and association with their context. A key technology in the

realization of IoT systems is middleware, which is usually described as a software system designed to be the

intermediary between IoT devices and applications. The middleware for IoT acts as a bond joining the heterogeneous
domains of applications communicating over heterogeneous interfaces. This paper presents the current gap and future

directions in this field by a comprehensive review of the existing middleware systems for IoT and the Open Source

Middleware Tools for the Internet of Things.

Keywords: Internet of Things, Middleware Requirements, Open source middleware.

I. INTRODUCTION

The Internet of Things (IoT) provides the ability for

human and computers to learn and interact from billions of

things that include sensors, actuators, services, and other
Internet connected objects. The realization of IoT systems

will enable seamless integration of the cyber-world with

our physical world and will fundamentally change and

empower human interaction with the world. A key

technology in the realization of IoT systems is

middleware, which is usually described as a software

system designed to be the intermediary between IoT

devices and applications.

Development of middleware.[1] & [2] in the domain of

IoT is an active area of research. There have been a lot of

researches towards building up this middleware addressing

interoperability across heterogeneous devices serving

diverse domains of applications, adaptation, context
awareness, device discovery and management, scalability,

managing a large data volumes and, privacy, security

aspects of the said IoT environment.

Therefore there is a strong need to understand how the

existing IoT-middleware systems work and address the

different requirements of ubiquity as well as IoT.

In this article focus has been given to study the existing

IoT-middlewares, understanding its functional components

and categorizing and comparing them as per the various

features along with the open sources middlewares for IoT.

The remainder of this article is organized as follows.

First, the related work in IoT-middleware is presented,

followed by descriptions of the essential functional blocks

and the system architecture of the IoT-middleware system.

The feature wise classification of theirs along with the

different interfaces and syntax and semantics strategies are

described in detail followed by the available open source

middlewares for IoT.

II. BACKGROUND

Research into the IoT is still in its early stage, and a

standard definition of the IoT is not yet available. IoT can

be viewed from three perspectives: Internet-oriented,
things-oriented (sensors or smart things) and semantic-

oriented (knowledge) [3].

The definition of ―things‖ in the IoT vision is very wide

and includes a variety of physical elements. These include

personal objects we carry around such as smart phones,

tablets and digital cameras. It also includes elements in our

environments (e.g. home, vehicle or work), industries

(e.g., machines, motor, robot) as well as things fitted with

tags (e.g., RFID), which become connected via a gateway

device (e.g., a smart phone). Based on this view of

―things‖, an enormous number of devices [7] will be

connected to the Internet, each providing data and
information, and some, even services.

A. MIDDLEWARE

Generally, a middleware abstracts the complexities of the

system or hardware, allowing the application developer to

focus all his effort on the task to be solved, without the

distraction of orthogonal concerns at the system or

hardware level. Such complexities may be related to

communication concerns or to more general computation.

A middleware provides a software layer between

applications, the operating system and the network
communications layers, which facilitates and coordinates

some aspect of cooperative processing. From the

computing perspective, a middleware provides a layer

between application software and system software. In the

IoT, there is likely to be considerable heterogeneity in

both the communication technologies in use, and also the

system level technologies, and a middleware should

support both perspectives as necessary.

Fig 1 presents the relationships between the IoT‘s middle-

ware requirements and its infrastructural and application

characteristics.

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjG9qL0hObPAhUMpo8KHfNFBj8QFgg6MAM&url=http%3A%2F%2Fwww.datamation.com%2Fmobile-wireless%2Fslideshows%2F6-open-source-middleware-tools-for-the-internet-of-things.html&usg=AFQjCNFtkJeEeCNBaZUXM2S1PbuqrhbCTQ&bvm=bv.135974163,d.c2I
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjG9qL0hObPAhUMpo8KHfNFBj8QFgg6MAM&url=http%3A%2F%2Fwww.datamation.com%2Fmobile-wireless%2Fslideshows%2F6-open-source-middleware-tools-for-the-internet-of-things.html&usg=AFQjCNFtkJeEeCNBaZUXM2S1PbuqrhbCTQ&bvm=bv.135974163,d.c2I
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjG9qL0hObPAhUMpo8KHfNFBj8QFgg6MAM&url=http%3A%2F%2Fwww.datamation.com%2Fmobile-wireless%2Fslideshows%2F6-open-source-middleware-tools-for-the-internet-of-things.html&usg=AFQjCNFtkJeEeCNBaZUXM2S1PbuqrhbCTQ&bvm=bv.135974163,d.c2I

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 11, November 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41113 72

Fig 1: Relationships between the IoT applications and

infrastructure and its middleware requirements (Research

Gate)

As shown in this figure, most of the requirements are

directly related to one or more characteristics of the IoT. A

few of them are also indirectly linked (black text) to one or

more characteristics of the IoT. For instance, the real-time

behavior requirement is directly related to the
application‘s real-time characteristics and indirectly to the

large number of events. Also, a few of the middleware

requirements (e.g., resource discovery and resource

management) jointly capture the same set of IoT

characteristics.

B. CLASSIFICATION OF IOT MIDDLEWARES

All the listed middlewares support device discovery and

management [8]. Context aware functionality is supported

by HYDRA, UBIWARE, UBIROAD and SMEPP. On the

other hand, SOCRADES, SMEPP, GSN, UBIROAD and
HYDRA are some examples of middleware implementing

security and user privacy in their architecture. Based on

platform portability, syntactic resolution, HYDRA,

SMEPP and ASPIRE are OSGi compliant, UBIROAD

usesJAVA and XML, UBISOAP uses J2SE and J2ME,

GSN uses XML and SQL, SIRENA and SOCRADES use

DPWS while SOCRADES also uses SAP NetWeaver [4]

platform and ISMB uses any JAVA compliant platform.

Where X [5] is developed using J2EE architecture and is

integrated with Oracle Application Server 10g.It also uses

Rhino rule engine which is implementation of Java Script.

III. OPEN SOURCE MIDDLEWARES

A. AllJoyn

AllJoyn is a collaborative open source software

framework that allows devices to communicate with other

devices around them. AllJoyn framework is flexible,
promotes proximal network and cloud connection is

optional. A simple example would be a motion sensor

letting a light bulb know no one is in the room it is

lighting, so it can shut itself off. The system uses

the Client–server model to organize itself. For example, a

light could be a "producer" (server) and a switch a

"consumer" (client).

Each "producer" on the network has an XML file

called introspection that is used to advertise the device's

abilities and what it can be asked to do. Microsoft has

added a technology called Device System Bridge that

allows devices using home or building protocols such

as Z-Wave and BACnet to appear on an AllJoyn network.
The system also has technology for audio streaming to

multiple device sinks in a synchronized way.

AllJoyn provides bunch of services that can be integrated

with its core.

 Onboarding Service: Provides a consistent way to

bring (onboard) a new device onto Wi-Fi network.

 Configuration Service: Allows one to configure

certain attributes of a device, such as its friendly name,

default language, passcode etc.

 Notification Service: Allows text-based, audio and

image (view URLs) notifications to be sent and

received by other devices on the network.

 Control Panel Service: Allows devices to advertise a

virtual control panel to be controlled remotely.

 Home Appliances & Entertainment (HAE)

Service: Allows a common way of monitoring and

managing HAE category devices, regardless of device

manufacturers.

 Lighting Service Framework (LSF) provides an open

and common way of communicating for AllJoyn-based

connected lighting products, regardless of

manufacturer.

B. OpenRemote

OpenRemote is software integration platform for

residential and commercial building automation.

OpenRemote platform is automation protocol agnostic,

operates on off-the-shelf hardware and is freely available

under an Open Source license. OpenRemote's architecture

enables fully autonomous and user-independent intelligent

buildings. End-user control interfaces are available for iOS

and Android devices, and for devices with modern web

browsers. User interface design, installation management

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Z-Wave

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 11, November 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41113 73

and configuration can be handled remotely with

OpenRemote cloud-based design tools.

Integrate: AMX, KNX, Lutron, Z-Wave, 1-Wire,

EnOcean, xPL, Insteon, X10, Infrared,

Russound, GlobalCache, IRTrans,

XBMC, VLC, panStamps, Denon AVR,

FreeBox, MythTV, and more.

Design: Customize control interfaces for each

device, individualize user interfaces for

each user

Control: Control panels for Android and iOS

devices, mobile web browsers, Desktop

PCs

Automate: Intelligent buildings with automated

rules, scripts and events

Manage: Remote updates, user interface changes,

system diagnosis, import tools, device

discovery

Cross-
platform:

Install on Windows, Linux, Mac,
Raspberry Pi, Alix, Synology,

ReadyNAS, QNAP and others.

OpenRemote is an open source project, with the ambition

to overcome the challenges of integration between many

different protocols and solutions available for home
automation, and offer visualization tools. OpenRemote

Inc. was created, to enable the sponsorship of the

OpenRemote open source project – in the vein of JBoss.

OpenRemote follows a Professional Open Source

methodology. It means that top contributors usually end up

participating in the company, first as contributors, then as

consultant as business develops, then as full-time

employees and owners.

In any automation project there are two roles: the

‗technicians‘ and the ‗user interface designer‘. The

designer is primarily interested to define the use cases, and

translate this into the behavior as well as UI of the system.

For B2B projects, these roles are filled in by installers and

UX/UI designers. In the ultimate B2C product these roles

can be automated and both handled by the end-user.

OpenRemote has chosen for a set of cloud-based
configuration tools, with a clear distinction between the

technical integration and UI design. These support both

roles. The advantage of cloud-based tools is the possibility

of remote support, both in project configuration as well as

updates and maintenance.

A second choice they made was to have the integration

and automation logic of devices and sensors, organized by

a local runtime controller. The rationale is based on

organizing an intrinsically stable and responsive system,

meaning independence at the lowest level possible with

the least dependency of higher level systems. An internet

connection is only required for communication to (sub)

systems outside the own network, or during configuration

of the system. The presence of non IP based wired or

wireless protocols, is another reason of requiring a local

controller.

The third choice made was to use an object model to

describe devices, commands and data, allowing for the

programming of rules (using Drools), macros, commands,

and designing a UI, independent of the underlying brand

or protocol. This limits the system programming effort as

the protocol specific programming will be eliminated.

An open-source middleware solution for the Internet of
Things, OpenRemote allows you to integrate any device

— regardless of brand or protocol — and design any user

interface for iOS, Android or web browsers.

Key Features:

 Integrates a variety of protocols

 Customized solutions to suit your needs

 From single accounts to fully-branded solutions

 Cloud-based design tools

Using OpenRemote‘s cloud-based design tools for

developing completely customized solutions, upgrades are
streamlined, i.e devices are literally future-proof.

C. KAA

Kaa IoT Platform introduces standardized methods for

enabling integration and interoperation across connected

products. The Kaa IoT Platform is licensed under Apache

2.0, including the server and client components. Kaa is

100% free to use in open source or proprietary software

with no royalties or fees. Kaa is designed to be robust,

flexible, and easy to use. Out of the box Kaa enhances

your connected products with a variety of functions.

 Profiling and grouping

 Events

 Log collection

 Notifications delivery

 Data distribution

 Transport abstraction

Kaa is a highly flexible open source platform for building,
managing, and integrating connected software in the space

of Internet of Things. Kaa provides a standardized

approach for integration and interoperation across

connected products. In addition, Kaa‘s powerful back-end

functionality greatly speeds up product development,

allowing vendors to concentrate on maximizing their

product‘s unique value to the consumer.

D. Mango

Mango is a modular web-application framework. It takes a

list of middleware, and an application and compiles them

into a single http server object. The middleware and apps
are written in a functional style, which keeps everything

very self-contained. Mango aims to make building

reusable modules of HTTP functionality as easy as

possible by enforcing a simple and unified API for web

frameworks, web apps, middleware.

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 11, November 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41113 74

Key features of mango are

1. Data Acquisition: Mango can receive data across

multiple protocols in sub-second intervals. Protocols

such as BACnet, Modbus, SNMP, and others are built

in and ready to use.

2. Real Time Data Monitoring: Data can be viewed easily

on the Mango Watch List, Point Details Page, or

custom HTML pages. From any modern browser real

time and historical data can be viewed.

3. High Performance Database: Mango Automation
Enterprise has a built-in high performance NoSQL

database optimised for historical data. It greatly

reduces system loads and allows for huge data sets to

be quickly stored, accessed, and archived.

4. Logic and Automation: With Mango you have the

power to write scripts to control equipment, calculate

new data points, and crunch numbers live, in real time.

5. Security: All communications with Mango can be

secured with SSL (Secure Socket Layer), ensuring the

privacy of information.

6. Cross Platform: Mango can be installed on Windows,
Linux, or Mac making it one of the most powerful fully

cross platform application of its type. Furthermore, we

can access Mango from mobile devices using just the

native browser.

7. Graphic Dashboards: Graphic Views offers a simple

and easy way to use images, graphics, and animations

to create dashboards and HMIs. With drag and drop

simplicity, our page is online quickly. JSP Pages allow

us to write custom JSP pages using html and JavaScript

that use your real time and historical Mango data. This

allows for complete customization of dashboards,

mobile apps, HMIs, and GUIs.
8. Internal Performance Monitoring: Keeping a large

system running at peak performance requires good

feedback on the internal process. Mango has excellent

internal tools for measuring and tuning internal

performance and capturing errors that help you insure

long term top performance.

9. Open Source Components: The Mango core and many

modules are Open Source. This provides an

opportunity for in-depth education for third party

developers, contributions from partner companies, and

general transparency on the quality of the code.

E. OpenIoT
OpenIoT is a generic middleware platform for Internet-of-

Things applications, which allows you to link together

Internet-connected devices and semantic Web services via

a friendly user interface, working either in Cloud

Computing environments or with a local server. This

platform is available as a Virtual Development Kit,

providing a complete cloud solution for the Internet of

Things which allows you to easily get up and running

getting information from sensor clouds and connecting this

information with Web services without worrying about
exactly what different sensors are being used. The

OpenIoT middleware enables the easy scalability of sensor

networks and the addition of new, cost-effective sensors in

an intrinsically flexible framework, and aims to provide a

complete middleware for Internet-of-Things applications,

connected sensors and wireless sensor networks. OpenIoT

is building a novel platform for IoT applications, funded

by the European Union, which includes powerful

capabilities such as the ability to compose (dynamically

and on-demand) non-trivial IoT services using a cloud-

based and utility-based paradigm.

With an aim to facilitate open access to a wide range of
technologies for Internet-connected sensors and other

objects exposed as ―services‖, the creators claim that

OpenIOT is the first open-source project to provide the

means for setting up, managing and using a sensor cloud

in this way. With the ability to support large-scale

deployments by co-scheduling access from thousands of

simultaneous users to millions of sensors and actuators,

OpenIoT will be well placed for all IoT-based solutions of

all sizes, and it will have a small number of its own open

(public data) sensing services for anyone to send queries

to. The OpenIoT project explores efficient ways to use and
manage cloud environments for IoT entities and resources,

such as sensors, actuators and smart devices, and the

management of utility-based, pay-as-you-go business

models for IoT networks and services.The platform will

provide instantiations of cloud-based and utility-based IoT

sensor and data management services, using the OpenIoT

adaptive middleware framework for deploying and

providing IoT services in cloud environments to enable the

concept of ―sensors as a service‖ business models for

commercial IoT applications. OpenIoT supports flexible

configuration and deployment of algorithms for collecting

and filtering the large volumes of data that are collected by
networks of Internet-connected objects, and processing

and detecting those events that are determined to be

particularly interesting and relevant to application or

business outcomes. As OpenIoT is a completely open-

source project, and all its source code is available for

download – developers and end-users can examine and

openly use the OpenIoT platform. You can use the

OpenIoT source code to create innovative services, to

extend OpenIoT with new sensor wrappers, or to improve

the OpenIoT platform itself. Furthermore, OpenIoT also

aims to provide the capacity for semantically annotating
sensor data, according to the W3C Semantic Sensor

Networks specification, streaming the data collected from

various sensors to a cloud computing infrastructure,

dynamically discovering and querying sensors and their

data, composing and delivering IoT services that comprise

data from multiple sensors and visualising IoT data using

many different options such as maps and graphs.

An example application area where OpenIoT has been

targeted is the improvement of efficiency in industrial

operations such as manufacturing and agriculture. The

OpenIoT platform can be used for intelligent sensing in

manufacturing environments where it offers rapid
integration of data from sensors and other devices in the

manufacturing environment, dynamic and intelligent

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control Engineering

ISO 3297:2007 Certified

Vol. 4, Issue 11, November 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41113 75

discovery of new sensors in factories, and analysis of data

collected from the factory floor. The OpenIoT platform

enables the dynamic selection of sensors along with the

nearly-real-time fusion of sensor data in order to deliver

any manufacturing indicators that are required – not just

sets of inflexible, pre-configured indicators. This can

increase the agility of decision-making and of the

manufacturing process. One example of this agricultural

application – where farmers and researchers can benefit

from an instantaneous crop performance analysis platform
that is powered by OpenIoT, using a wide range of

distributed remote sensors gathering various types of data

in order to build models that predict crop yields.

F. Nimbits

Nimbits is a PaaS that can be downloaded on a Raspberry

Pi, Web Server, Amazon EC2, or Google App Engine. The

platform is used for developing hardware and software

solutions that can connect to the cloud or to each other,

logging and retrieving large amounts of data from physical

devices, triggering events or alerts, or initiating complex
analysis.

Key Features:

 Download Nimbits servers on chips, servers or the

cloud

 Open-source platform

 Event triggers and alerts

 Record and process geo and time-stamped data

 Build provided for Google App Engine and Linux

Systems

 Compatible with most J2EE servers (Apache Tomcat,

Jetty Server)

IV.CHALLENGES & RESEARCH WORK

Although the middlewares presented herein address many

issues and requirements in IoT, there are still some open

research challenges. In particular, research is needed in the
area of dynamic heterogeneous resource discovery and

composition, scalability, reliability, interoperability,

context-awareness, security and privacy with IoT

middleware. Importantly, most current middlewares

address WSNs, while other perspectives (e.g., M2M,

RFID, and SCADA) are rarely addressed. Even though

there have been significant advances in addressing many

challenges for middleware in an IoT environment, the

following open challenges remains [6].

1. Challenges related to Functional Requirements like

Resource Discovery, Resource Management, Data

Management, Event Management and Code
Management.

2. Challenges related to Non-Functional Requirements

like Scalability, Reliability, Availability and

Popularity.

3. Challenges related to Architectural Requirements like

Programming Abstraction, Interoperability and

Service-based requirements

V. CONCLUSION

Middleware is necessary to ease the development of the

diverse applications and services in IoT. Many proposals

have focused on this problem. The proposals are diverse

and involve various middleware design approaches and

support different requirements. This paper puts these

works into perspective and presents a holistic view of the

field. Finally, open research issues, challenges and

recommended possible future research directions are
outlined. The current state-of-the-art of the middleware for

IoT explores different approaches to support some of the

functionalities to operate in IoT domain. But none covers

the full set of functionalities to meet the requirement of

IoT-middleware as analysed here for any smart or

ubiquitous environment. Middlewares have several short

comings or open issues. They are available for respective

domains separately. There exists no generic middleware

which can be applicable across all possible smart

environments. It has been observed from this study that to

resolve scalability issues IPv6 is proposed but not yet
resolved completely. Support for context detection and

processing have not been achieved fully. Support of

semantic modelling and managing of data volumes also

fall in the open issues, particularly handling the crowd

sourcing of diverse domain. There is a scope for research

work in making a generic IoT-middleware system, which

is applicable across all domains by making all the

functional components reusable and can be added as add-

on to the middleware system.

Although the existing middleware solutions address many

requirements associated with middleware in IoTs, some

requirements and related research issues remain relatively
unexplored, such as scalable and dynamic resource

discovery and composition, system-wide scalability,

reliability, security and privacy, interoperability,

integration of intelligence and context-awareness. There is

significant scope for future work in these areas.

REFERENCES

[1] Liu, D. -L. Y. F., Liang, Y. -D.: A Survey of the Internet of Things.

In: The 2010 International Conference on Electronic-Business

Intelligence (ICEBI) (2010)

[2] Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey.

In: Computer Networks, vol. 54, issue 15, pp. 2787—2805. (2010)

[3] L. Atzori, A. Iera, and G. Morabito, ―The internet of things: A

survey,‖ Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] SAP NETWEAVER, http://www.sap.com/platform/netweaver/

components/index.epx

[5] http://wendang.baidu.com/view/ad7040a1b0717fd5360cdc8a.html

[6] Middleware for Internet of Things: a Survey, M.A. Razzaque,

Marija Milojevic-Jevric, Andrei Palade, Siobh´an Clarke, IEEE

INTERNET OF THINGS JOURNAL Vol. 3 Issue 1, pp 70-95, Feb

2016

[7] Jyothi T, Software Defined Network for Efficient Transmission in

Wireless Networks,International Journal of Science, Engineering

and Technology Research (IJSETR) Volume 5, Issue 10, October 2016

[8] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti and

Subhajit Dutta, ―Role of middleware for Internet of Things: A

study, International Journal of Computer Science & Engineering

Survey (IJCSES) Vol.2, No.3, August 2011

